High-Temperature Steam Electrolysis for Hydrogen Production Materials Development for Improved Efficiency and Durability Jennifer Mawdsley, Deborah Myers, and Xiaoping Wang Electrochemical Technology Program, Chemical Engineering Division, Argonne National Laboratory ### Introduction High-temperature steam electrolysis using heat and electricity from a nuclear reactor is a route to making affordable hydrogen. This process splits water with heat and electrical energy using the technology of solid oxide fuel cells (SOFC), where: - The cell is polarized to reverse the SOFC reaction - The feed stream is 90% steam/10% hydrogen - Operating between 700°C and 900°C reduces the electrical energy demand #### Challenges - A much more active oxygen evolution electrode material is needed. - The traditional SOFC has been optimized for performance at 1000°C. The oxygen electrode material of the traditional SOFC. La_{0.8}Sr_{0.2}MnO₃ (LSM), has limited oxygen ion and electronic conductivity at temperatures between 700°C and 900°C. # Approach We have been investigating alternative materials for improved oxygen electrode performance below 1000°C by exploring materials with significant electronic and ionic conductivity at 800 to 900°C, such as: - LaNiO₃ (LN) - La_{0.8}Sr_{0.2}CoO₃ (LSC) - La_{0.8}Sr_{0.2}FeO₃ (LSF) - La_{0.7}Sr_{0.2}FeO₃ (LSF-ns) #### Experimental procedure: - Powders of the electrode materials were synthesized using a self-combustion process - Electrode inks were made by ball milling the powders with ethanol - The electrode inks were painted onto yttria-stabilized zirconia (YSZ) subtrates to make the working and reference electrodes - . Counter electrodes were painted onto the opposite sides of the YSZ substrates using platinum ink - Electrochemical impedance spectroscopy (EIS) was used to evaluate the electrode materials' area specific resistance (ASR) at temperatures of 800, 850, 900, and 1000°C # **Results and Conclusions** - Our results have shown that LSC and LSF-ns have lower ASR's than commercially available LSM-based materials at temperatures between 800°C and 900°C. - EIS results are shown in the form of a Nyquist plot—real impedance, Z', versus imaginary impedance, Z". - ASR is calculated using the following equation: $$ASR = Z'_{max} - Z'_{min}$$ | Electrode
Composition | Area Specific Resistance (Ω-cm²) | | | | |--|----------------------------------|-------|-------|--------| | | 800°C | 850°C | 900°C | 1000°C | | La _{0.8} Sr _{0.2} MnO ₃ | 8.4 | nd | 3.7 | 0.65 | | La _{0.8} Sr _{0.2} CoO ₃ | 1.3 | 0.67 | 0.27 | 0.080 | | La _{0.8} Sr _{0.2} FeO ₃ | 2.2 | 1.2 | 0.58 | nd | | La _{0.7} Sr _{0.2} FeO ₃ | 0.81 | 0.38 | 0.19 | 0.054 | | LaNiO ₂ | 1.4 | 0.89 | 0.37 | 0.082 | nd = not determined